
Extrema Tutorial 
Data Analysis 
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Introduction 
Extrema provides numerous tools for data analysis, , including data transformation tools, 
filtering tools, cutting and selection tools. Elementary data manipulation is done using 
Extrema’s built-in expression evaluation capabilities.  Any expression involving a variable 
will return a similar variable, each element of which has been modified by the expression; the 
return value of the expression can be saved to another variable, or operated on directly. 

Examples: 

Y = SIN(X)^2 + COS(X)^2  ! save expression results in variable Y 
GRAPH X 3*X^2-6X+2   ! graph expression directly 



Expressions are built up of constants, variables, operators, and functions, which can be 
combined in any algebraic syntax, as in the examples above. 

Data Representation 
Data is stored internally in variables, which have names that you use to reference the data 
they contain.  Except for a few automatically generated variables, these names are chosen by 
the user.  The first character of a variable name must be an alphabetic character, that is, A to 
Z, and the maximum number of characters in a name is thirty-two (32).  Except for these 
restrictions, variable names can be any combination of: alphabetic characters (ABC … 
XYZ), digits (0123456789), underscore (_), and dollar sign ($). 

Note Variable names are case-insensitive, e.g., variable x is the same as X. 

Function names are reserved names and cannot be used as variable names. 

Variables can contain character data or numeric data.  Numeric data are always stored as 
double-precision real values. 

Character (or string) variables can be one of the following types: 

 string scalar: a simple string of text 
 string array: an array of text strings 

Numeric variables can be one of the following types: 

 scalar: a number 
 vector: a one-dimensional array of numbers 
 matrix: a two-dimensional array of numbers 
 tensor: a three-dimensional array of numbers (to be implemented) 

The contents of arrays are indexed sequentially, with a starting index of one (1). 

Except for physical memory limitations, there is no limit to the number of variables, or to the 
length of strings, or to the size of arrays. 

Addressing parts of arrays 
To refer to an entire array, simply use the variable’s name. 

To select an individual element from the array, provide the index of the element in square 
brackets: 

x[8]  ! 8th element of vector x 
y[2,6] ! value from 2nd row, 6th column of matrix y 

In all of the above cases, you are referring to a single value, i.e., a scalar.  You can also specify 
a range of indices using the colon (:) character: 



x[8:20] ! 8th through 20th elements of vector x 
y[1:10,1] ! first 10 rows from the first column of y 

It is also possible to replace any part of an index with a mathematical expression.  For 
example: 

x[2^3:10*2]  ! 8th through 20th elements of vector x 
y[1:sqrt(100),1] ! first 10 rows from the first column of y 

Variables can also be used in indices. For example, suppose you have a vector z which holds 
the values 1, 2,…, 10. The following are then valid: 

x[z[2]^3:z[#]*2] ! 8th through 20th elements of vector x 
y[z,1]   ! first 10 rows from the first column of y 

Such expressions can result in scalars, arrays, vectors, or matrices, depending on the number 
of dimensions of the result. 

The special characters * and # are also available for use in indices.  For example: 

x[*]   ! all values from vector x 
x[#]   ! the last value from vector x 
x[#-1]  ! the next to last value from vector x 
m[*,*]  ! all rows and all columns of matrix m 
m[*,#]  ! all rows and the last column of matrix m 
m[*,1:#-1]  ! all rows and all but last column of matrix m 

Constants 
You can type numeric values or constants anywhere a scalar variable or value is expected. 

Constant arrays are expressed as a list of values inside square brackets.  When typing out 
vector or matrix values, separate successive indexes with a comma, and successive values 
within an index with a semicolon. 

5.03E-8    ! scalar value 
[1;2;4;8]    ! vector with 4 values 
[1;0;0, 0;1;0, 0;0;1] ! 3 by 3 identity matrix 

You can also use the [start:stop:step] notation to specify regular sequences of values 
with which to fill the variable: 

[0:2*pi:0.1] ! vector from 0 to 2π in steps of 0.1 
[10:-10:-2] ! descending sequence from 10 to –10 in steps of 2 

Expressions 
Extrema allows you to use mathematical expressions anywhere it would expect a variable or 
value, provided the expression evaluates to the expected type.  Simple expressions involving 



dimensioned variables generally return a value of the same dimension.  Thus, if x has 10 
values, then the expression sin(x)+1 also has 10 values.  Other examples: 

m[x,#-2:#]  ! the rows denoted in x, and the last 3 columns of m 
x*m[n,*]  ! x times the nth row of m 
sin(a+b)  ! the sines of the sums of respective values in a and b 
x^2*sin(x)+1 ! a non-linear function of the values in x 

Note There is no limit to the length or complexity of a mathematical expression in 
Extrema . 

You can also index the results of an expression, e.g., 

(SIN(x)+1)[4:8]  ! selects 4th through 8th values of the expression 

Generating Data 
Commonly, you will need to create data spontaneously.  In simple cases, you can type in the 
data directly.  Usually, however, you will be working with data sizes that make this approach 
too tedious.  There are numerous methods you can use for bulk data generation. 

Sequences 
Simple sequences can be generated using the [start:stop:step] array notation. 

pi = ACOS(-1) ! define scalar pi with value equal to π 
X = [0:pi:.01] ! make a sequence of values from 0 to π in increments of 0.01 

You can create a regular sequence of values using the GENERATE facility.  The generated 
data can be specified using any of the following methods: 

 minimum value, maximum value, number of values 
 minimum value, maximum value, step size 
 minimum value, step size, number of values 

You can also request random values instead of a regular step size. 

Operators 
In addition to the simple arithmetic operators: 

+ -plus    - -minus 
* -times    / -divide 
^ -exponentiation   () -grouping 

there are also special vector and matrix operators: 

>< - outer product    <> - inner product 



<- - matrix transpose   >- - matrix reflect 
/| - vector union    /& - vector intersection 
// -append 

and a set of Boolean operators that return true (1) or false (0) values: 

| - or     || - exclusive or 
 & - and     \ - not 
= - equal to    ~= - not equal to 
> - greater than    < - less than 
>= - greater than or equal to  <= - less than or equal to 

Functions 
By applying an expression to an already-existing variable, you can generate a new variable in 
which every element of the input variable has been modified by the expression.  Capture this 
data in a new variable by simply setting the new variable to equal the expression: 

y = 10*SIN(x)  ! If x is a vector, then so is y 

If your source data is a monotonically increasing sequence that serves as the dependent 
variable, then you will get a fair representation of the function itself over that range.  For 
instance, to produce data representing the function SIN(x) over the range 0 to 2π: 

pi = ACOS(-1) 
x = [0:2*pi:0.01] 
y = SIN(x) 

Extrema  has over 200 built-in functions that can perform a wide range of other operations on 
your data.  Examples include: 

 conventional mathematical functions, such as the trigonometric functions, logarithms, 
roots and exponentials, and rounding functions. 

 advanced functions, such as Bessel, Clebsch-Gordan, etc. 

 calculus functions, such as integral and derivative. 

 probability functions 

 programmers' functions, such as random number generation, variable tests, looping 
functions 

 array and matrix functions, such as where, eigenvectors and eigenvalues, etc. 

 string functions, such as case, date/time, etc. 



In all cases, these functions accept data of a certain type, and return data of a certain type;  
they may be freely used in any expression, so long as the types they return make sense in the 
expression context. 

For further information, consult the Online Help or the Extrema Command Reference. 

Fitting 
Fitting data, that is, describing a set of data points as some sort of function, is one of the most 
important forms of data analysis.  Extrema's data-fitting capabilities are sophisticated and 
flexible; complete details are provided in the Extrema Command Reference, but some 
simple examples are given here. 

Smoothing 
Smoothing is a simple way of fitting a set of data points to a smooth curve.  There are several 
methods of calculating these smooth curves, notably cubic splines under tension (SMOOTH 
and SPLSMOOTH functions), and Saviztky-Golay filters (SAVGOL function). 

 

Smoothing functions return a smoothed set of data, that is, they accept your data as input, and 
output a new set of values that fall on a smooth curve of the appropriate type.  They can 
operate on any shape of data without any prior knowledge of the data's shape. (In some cases, 
there is a requirement that the data be monotonically increasing.)  They will not, however, 
return an actual algebraic function describing the shape of your data.  For this you need to do a 
proper fit (see below). 



There are also interpolation functions that will fill in missing data using similar smoothing 
techniques (INTERP and SPLINTERP functions. 

Fitting to a function 
To describe your data as a function, you'll need to know in advance what function you will be 
fitting to.  This function will be expressed with a number of free parameters, whose 
precise values are unknown.  The purpose of the fit is to determine what values of those free 
parameters best match the data. 

Note Fitting is an uncertain process by its very nature.  There is no guarantee that an 
appropriate fit will be found in all cases, and there is no guarantee that there is only 
one such  fit that describes the data. 

A free parameter is like a scalar variable, except that instead of being set by you (or your 
data analysis operations), it is set by Extrema in the course of making the fit.  This difference 
in behaviour means that free parameters are declared differently, so that Extrema knows it 
can vary the parameter, instead of treating it as a fixed constant in the fitting expression. 

SET PLOTSYMBOLCOLOR RED  ! 
GRAPH X Y     ! graph the raw data  
SCALAR\FIT A B    ! declare free parameters 
FIT Y=A+B*X    ! perform the fit 
SET PLOTSYMBOL 0   ! graph the fit function as a line 
SET CURVECOLOR BLUE   !  
GRAPH X A+B*X    ! 



 

Free parameters should be initialized to an appropriate guess value, from which the fit will 
begin.  In simple cases, the actual value of the guess is not terribly important; Extrema   will 
find the correct value regardless.  In more complex cases, the initial guess will affect how the 
fit progresses, and could affect the final result. In other words, in some cases, different fits can 
be found depending on where you start, so choosing a reasonable guess to initialize the free 
parameters can be important.  Once the fit is complete, the free parameters will have their 
fitted values.  If Extrema failed to find a good fit, the free parameters will have the last values 
Extrema tried to fit with; or, optionally, they can be reset to their initial values upon failure. 

Normally, fitting results in multiple lines of text output describing the fit.  The values of the 
free parameters, and various other values describing the accuracy of the fit, are all contained in 
this output. Extrema can optionally write some of this information into variables, for access 
by scripts and expressions later in the analysis process. 

Fitting different data segments to different functions 
In some cases you will want to divide the data into segments or groups, and fit each group 
separately.  For example, suppose you want to fit two line segments to the data such that they 
join at one end point.  Below, on the left, is an example where the two segments are forced to 
join and, on the right, an example where they are allowed to float. 

X=[1:19] 
Y=[1;2;3;4;5;6;7;8;9;10;9;8;7;6;5;4;3;2;1]+5*ran(x) 
WINDOW 5 
SET PLOTSYMBOL –1 
GRAPH x y 
SCALAR\FIT a b c d 



X0 = 10 
FIT y=(a+b*x)*(x<=x0)+(c+d*x)*(x>=x0)+(a+b*x-c-d*x)*1000*(x=x0) 
SET PLOTSYMBOL 0 
I1 = WHERE(x<=x0) 
I2 = WHERE(x>=x0) 
Y1 = a+b*x 
Y2 = c+d*x 
SET CURVECOLOR red 
GRAPH\OVERLAY x[i1] y1[i1] 
GRAPH\OVERLAY x[i2] y2[i2] 
WINDOW 7 
SET PLOTSYMBOL –1 
GRAPH x y 
FIT y=( a+b*x)*(x<=x0)+(c+d*x)*(x>=x0) 
SET PLOTSYMBOL 0 
Y1 = a+b*x 
Y2 = c+d*x 
SET CURVECOLOR red 
GRAPH\OVERLAY x[i1] y1[i1] 
GRAPH\OVERLAY x[i2] y2[i2] 
REPLOT\ALL 

 

Binning 
Binning data is a means of converting one-dimensional data into two-dimensional data (BIN 
command), or two-dimensional into three-dimensional (BIN2D command). 

Simply put, binning counts the data points falling into a certain range.  This results in a vector 
(or vectors, in the 2-D case) describing the ranges (the bins), and a second vector (or matrix) 
describing the counts. 

Simple binning is straightforward.  An input vector of values is taken as input, and two output 
vectors containing the bins and the counts are returned. 

BIN X XBIN XCOUNT   ! bin the values in X 
GRAPH\HISTOGRAM XBIN XCOUNT 

There are many binning options, among them: 



 various options for defining the bin boundaries 
 the averages of the values in each bin can be returned 
 values can be counted conditionally 
 counts can be weighted 
 Lagrange binning 

Interpolation 
There are many cases where one needs to interpolate data, for instance: 

 estimating missing data values 
 converting an irregular data sample to a monotonically increasing data sample 
 representing a set of data points as a smooth function 

Interpolation presumes the data can be represented as a smooth function, and that this function 
passes through all of the data points.  Interpolation therefore consists of looking up the y-
values of this function for any x that is not represented in the original data.  This is normally 
done by means of the INTERP function, which returns a data vector containing the 
interpolated values.  The INTERP function accepts three arguments: 

 x-vector, a monotonically increasing set of x values. 
 y-vector, the values of y at each of the above x values. 
 x-interpolation points, a set of x-values at which to interpolate new y-values. 

The method of interpolation is normally interpolating splines, but an optional fourth argument 
can be used to select an alternate interpolation method: 

 LINEAR  simple linear interpolation 
 LAGRANGE general Lagrange interpolation 
 FC   Fritsch and Carlson method of monotone piecewise cubic 

   interpolation 

If one's starting data is not monotonically increasing, then one can use the 
SPLINTERP(x,y,n) function instead.  It accepts an arbitrary set of x and y values, and a 
number of points to interpolate.  The output is a 2-column matrix, the first column of which 
gives the interpolated points (i.e., x-values), and the second of which gives the interpolated 
values (i.e., y-values). 

2-D interpolation 
Beginning with a scattered set of 3-D data points in three vectors (say, x, y, and z), you can 
interpolate a regular matrix using the GRID command.  The three vectors are assumed to 
represent scattered points, where z[i] is the altitude corresponding to the coordinates 
(x[i],y[i]).  The set of scattered data points is used to construct a Thiessen triangulation 
of the plane and a regular matrix, m, is interpolated. 

For example, the following script produces the pictures below. 

X=[1;0;1;0;0.2;0.3;0.5;0.8] 



Y=[5;5;0;0;1;1.5;2.5;4] 
Z=[10;10;10;10;-100;10;-100;500] 
GRID\XYOUT X Y Z M XOUT YOUT 
SET PLOTSYMBOL –14 
GRAPH X Y      ! produce the graph on the left 
SET PLOTSYMBOL 0 
DENSITY\DITHER XOUT YOUT M  ! produce the density plot 

 

Integration 
Integration is the summing of areas and volumes under curves and surfaces. Extrema 
provides you with several tools to accomplish this. 

The INTEGRAL function is the simplest method; it accepts two vectors representing the x-
values (monotonically increasing) and y-values of the function to be integrated.  The return 
value is the integrated function, i.e., the integral at each x-value; there is one additional value 
appended to the end of this output vector, and that is the integral over the full range of x. 

For example, to find the area under    cos3(x)+sin4(x) for 0 ≤ x ≤ π: 

PI = ACOS(-1) 
X = [0:PI:.1] 
YI = INTEGRAL(X,COS(X)^3+SIN(X)^4) 
VALUE = YI[#] 



 

Other functions 
Please refer to the DERIV function (derivative of a function); and the AREA function (area 
within a polygon), and the VOLUME function (volume under a surface).  There are also 
numerous special integration functions, such as elliptic integral, Fresnel integral, exponential 
integral, sine integral (SININT) and cosine integral (COSINT). 

Two-dimensional integration is typically done using the VOLUME function, which can operate 
on a variety of data types: 

 vectors containing scattered (x,y) points 
 vectors containing scattered polar coordinate points (angle, radius) 
 regular matrix 

Data selection 
Filtering, cutting, and other forms of conditional data selection are a big part of many analysis 
tasks.  There are many ways this can be accomplished in Extrema. 

Many of these techniques involve selecting subsets of vectors, matrices, or tensors, according 
to some arbitrary condition.  A trivial form of data selection simply consists of selecting the 
desired indexes, for example: 

good_data = m[#,*]  ! only the last column of the matrix is good 



If the good data is scattered throughout a vector (say data), and you have the indexes of the 
good values in another vector good, then you can select the good data using the notation: 

good_data = data(good) 

Determining which indexes are good and which are bad is the tricky part.  The WHERE 
function is invaluable for this.  It accepts a vector as input, and returns the indexes where the 
input vector was not equal to zero. 

The input vector is usually some kind of Boolean operation on the actual data vector, such that 
a vector of true/false (1/0) values is actually passed to the WHERE function.  The return vector 
of indexes is then used to select the values from the original data vectors. 

The power of this function is best illustrated with a few simple examples: 

Example 1: select the data points within 1 unit of the origin 

We have a scattered set of data points in the vectors x and y, but we want only the ones that 
lie within the unit circle, i.e., the points that satisfy SQRT(x^2+y^2)<=1. 

I=WHERE(SQRT(X^2+Y^2)<=1)  ! select data in unit circle 
! i is our list of selected indexes 

GRAPH X[I] Y[I]    ! graph the selected data 

Example 2: select only the data points collected within a time window 

We have an unordered, scattered set of data points in the vectors x and y, and the times of 
each in a vector t. Say our time window is defined by tmin and tmax. 

I=WHERE(T>=TMIN & T<=TMAX) ! select data in time window 
GRAPH X[I] Y[I]    ! graph the selected data 

Example 3: select only the data points whose error is below a threshold 

We have a set of data points in the vectors x and y, with errors denoted by vectors xerr and 
yerr.  We want to reject any data point with an x-error exceeding xthresh or y-error 
exceeding ythresh. 

I=WHERE(XERR<=XTHRESH|YERR<=YTHRESH)  ! select good data 
GRAPH X[I] Y[I] XERR[I] YERR[I]   ! graph the selected data 

Example 4: eliminate spikes from the data 

We have a set of data points in the vectors x and y, with occasional anomalous (single-point) 
spikes where the y-value goes very high.  In the simple case, we can simply filter out any data 
over a certain y-value (say, ymax): 



I=WHERE(Y<YMAX) 
GRAPH X[I] Y[I]  ! graph the selected data 

This won't work if the good data occasionally can rise above ymax.  In this case you might 
only want to filter out spikes with a certain minimum height (say, spike_min) relative to 
adjacent good points. Here is a simple way to accomplish that: 

YDIFF[1] = 0     ! get y-differences between each point and the previous point 
YDIFF[2:LEN(Y)] = Y[2:#]-Y[1:#-1] 
I=WHERE(YDIFF<SPIKE_MIN) 
GRAPH X[I] Y[I]  ! graph the selected data 
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