
Extrema Tutorial
Data Analysis

0 200 400 600 800
3

4

5

6

7

8 Fitted function y=a*sin(x+b)*exp(x/c) a = 5.45613
b = 19.1912
c = 864.036

Introduction
Extrema provides numerous tools for data analysis, , including data transformation tools,
filtering tools, cutting and selection tools. Elementary data manipulation is done using
Extrema’s built-in expression evaluation capabilities. Any expression involving a variable
will return a similar variable, each element of which has been modified by the expression; the
return value of the expression can be saved to another variable, or operated on directly.

Examples:

Y = SIN(X)^2 + COS(X)^2 ! save expression results in variable Y
GRAPH X 3*X^2-6X+2 ! graph expression directly

Expressions are built up of constants, variables, operators, and functions, which can be
combined in any algebraic syntax, as in the examples above.

Data Representation
Data is stored internally in variables, which have names that you use to reference the data
they contain. Except for a few automatically generated variables, these names are chosen by
the user. The first character of a variable name must be an alphabetic character, that is, A to
Z, and the maximum number of characters in a name is thirty-two (32). Except for these
restrictions, variable names can be any combination of: alphabetic characters (ABC …
XYZ), digits (0123456789), underscore (_), and dollar sign ($).

Note Variable names are case-insensitive, e.g., variable x is the same as X.

Function names are reserved names and cannot be used as variable names.

Variables can contain character data or numeric data. Numeric data are always stored as
double-precision real values.

Character (or string) variables can be one of the following types:

 string scalar: a simple string of text
 string array: an array of text strings

Numeric variables can be one of the following types:

 scalar: a number
 vector: a one-dimensional array of numbers
 matrix: a two-dimensional array of numbers
 tensor: a three-dimensional array of numbers (to be implemented)

The contents of arrays are indexed sequentially, with a starting index of one (1).

Except for physical memory limitations, there is no limit to the number of variables, or to the
length of strings, or to the size of arrays.

Addressing parts of arrays
To refer to an entire array, simply use the variable’s name.

To select an individual element from the array, provide the index of the element in square
brackets:

x[8] ! 8th element of vector x
y[2,6] ! value from 2nd row, 6th column of matrix y

In all of the above cases, you are referring to a single value, i.e., a scalar. You can also specify
a range of indices using the colon (:) character:

x[8:20] ! 8th through 20th elements of vector x
y[1:10,1] ! first 10 rows from the first column of y

It is also possible to replace any part of an index with a mathematical expression. For
example:

x[2^3:10*2] ! 8th through 20th elements of vector x
y[1:sqrt(100),1] ! first 10 rows from the first column of y

Variables can also be used in indices. For example, suppose you have a vector z which holds
the values 1, 2,…, 10. The following are then valid:

x[z[2]^3:z[#]*2] ! 8th through 20th elements of vector x
y[z,1] ! first 10 rows from the first column of y

Such expressions can result in scalars, arrays, vectors, or matrices, depending on the number
of dimensions of the result.

The special characters * and # are also available for use in indices. For example:

x[*] ! all values from vector x
x[#] ! the last value from vector x
x[#-1] ! the next to last value from vector x
m[*,*] ! all rows and all columns of matrix m
m[*,#] ! all rows and the last column of matrix m
m[*,1:#-1] ! all rows and all but last column of matrix m

Constants
You can type numeric values or constants anywhere a scalar variable or value is expected.

Constant arrays are expressed as a list of values inside square brackets. When typing out
vector or matrix values, separate successive indexes with a comma, and successive values
within an index with a semicolon.

5.03E-8 ! scalar value
[1;2;4;8] ! vector with 4 values
[1;0;0, 0;1;0, 0;0;1] ! 3 by 3 identity matrix

You can also use the [start:stop:step] notation to specify regular sequences of values
with which to fill the variable:

[0:2*pi:0.1] ! vector from 0 to 2π in steps of 0.1
[10:-10:-2] ! descending sequence from 10 to –10 in steps of 2

Expressions
Extrema allows you to use mathematical expressions anywhere it would expect a variable or
value, provided the expression evaluates to the expected type. Simple expressions involving

dimensioned variables generally return a value of the same dimension. Thus, if x has 10
values, then the expression sin(x)+1 also has 10 values. Other examples:

m[x,#-2:#] ! the rows denoted in x, and the last 3 columns of m
x*m[n,*] ! x times the nth row of m
sin(a+b) ! the sines of the sums of respective values in a and b
x^2*sin(x)+1 ! a non-linear function of the values in x

Note There is no limit to the length or complexity of a mathematical expression in
Extrema .

You can also index the results of an expression, e.g.,

(SIN(x)+1)[4:8] ! selects 4th through 8th values of the expression

Generating Data
Commonly, you will need to create data spontaneously. In simple cases, you can type in the
data directly. Usually, however, you will be working with data sizes that make this approach
too tedious. There are numerous methods you can use for bulk data generation.

Sequences
Simple sequences can be generated using the [start:stop:step] array notation.

pi = ACOS(-1) ! define scalar pi with value equal to π
X = [0:pi:.01] ! make a sequence of values from 0 to π in increments of 0.01

You can create a regular sequence of values using the GENERATE facility. The generated
data can be specified using any of the following methods:

 minimum value, maximum value, number of values
 minimum value, maximum value, step size
 minimum value, step size, number of values

You can also request random values instead of a regular step size.

Operators
In addition to the simple arithmetic operators:

+ -plus - -minus
* -times / -divide
^ -exponentiation () -grouping

there are also special vector and matrix operators:

>< - outer product <> - inner product

<- - matrix transpose >- - matrix reflect
/| - vector union /& - vector intersection
// -append

and a set of Boolean operators that return true (1) or false (0) values:

| - or || - exclusive or
 & - and \ - not
= - equal to ~= - not equal to
> - greater than < - less than
>= - greater than or equal to <= - less than or equal to

Functions
By applying an expression to an already-existing variable, you can generate a new variable in
which every element of the input variable has been modified by the expression. Capture this
data in a new variable by simply setting the new variable to equal the expression:

y = 10*SIN(x) ! If x is a vector, then so is y

If your source data is a monotonically increasing sequence that serves as the dependent
variable, then you will get a fair representation of the function itself over that range. For
instance, to produce data representing the function SIN(x) over the range 0 to 2π:

pi = ACOS(-1)
x = [0:2*pi:0.01]
y = SIN(x)

Extrema has over 200 built-in functions that can perform a wide range of other operations on
your data. Examples include:

 conventional mathematical functions, such as the trigonometric functions, logarithms,
roots and exponentials, and rounding functions.

 advanced functions, such as Bessel, Clebsch-Gordan, etc.

 calculus functions, such as integral and derivative.

 probability functions

 programmers' functions, such as random number generation, variable tests, looping
functions

 array and matrix functions, such as where, eigenvectors and eigenvalues, etc.

 string functions, such as case, date/time, etc.

In all cases, these functions accept data of a certain type, and return data of a certain type;
they may be freely used in any expression, so long as the types they return make sense in the
expression context.

For further information, consult the Online Help or the Extrema Command Reference.

Fitting
Fitting data, that is, describing a set of data points as some sort of function, is one of the most
important forms of data analysis. Extrema's data-fitting capabilities are sophisticated and
flexible; complete details are provided in the Extrema Command Reference, but some
simple examples are given here.

Smoothing
Smoothing is a simple way of fitting a set of data points to a smooth curve. There are several
methods of calculating these smooth curves, notably cubic splines under tension (SMOOTH
and SPLSMOOTH functions), and Saviztky-Golay filters (SAVGOL function).

Smoothing functions return a smoothed set of data, that is, they accept your data as input, and
output a new set of values that fall on a smooth curve of the appropriate type. They can
operate on any shape of data without any prior knowledge of the data's shape. (In some cases,
there is a requirement that the data be monotonically increasing.) They will not, however,
return an actual algebraic function describing the shape of your data. For this you need to do a
proper fit (see below).

There are also interpolation functions that will fill in missing data using similar smoothing
techniques (INTERP and SPLINTERP functions.

Fitting to a function
To describe your data as a function, you'll need to know in advance what function you will be
fitting to. This function will be expressed with a number of free parameters, whose
precise values are unknown. The purpose of the fit is to determine what values of those free
parameters best match the data.

Note Fitting is an uncertain process by its very nature. There is no guarantee that an
appropriate fit will be found in all cases, and there is no guarantee that there is only
one such fit that describes the data.

A free parameter is like a scalar variable, except that instead of being set by you (or your
data analysis operations), it is set by Extrema in the course of making the fit. This difference
in behaviour means that free parameters are declared differently, so that Extrema knows it
can vary the parameter, instead of treating it as a fixed constant in the fitting expression.

SET PLOTSYMBOLCOLOR RED !
GRAPH X Y ! graph the raw data
SCALAR\FIT A B ! declare free parameters
FIT Y=A+B*X ! perform the fit
SET PLOTSYMBOL 0 ! graph the fit function as a line
SET CURVECOLOR BLUE !
GRAPH X A+B*X !

Free parameters should be initialized to an appropriate guess value, from which the fit will
begin. In simple cases, the actual value of the guess is not terribly important; Extrema will
find the correct value regardless. In more complex cases, the initial guess will affect how the
fit progresses, and could affect the final result. In other words, in some cases, different fits can
be found depending on where you start, so choosing a reasonable guess to initialize the free
parameters can be important. Once the fit is complete, the free parameters will have their
fitted values. If Extrema failed to find a good fit, the free parameters will have the last values
Extrema tried to fit with; or, optionally, they can be reset to their initial values upon failure.

Normally, fitting results in multiple lines of text output describing the fit. The values of the
free parameters, and various other values describing the accuracy of the fit, are all contained in
this output. Extrema can optionally write some of this information into variables, for access
by scripts and expressions later in the analysis process.

Fitting different data segments to different functions
In some cases you will want to divide the data into segments or groups, and fit each group
separately. For example, suppose you want to fit two line segments to the data such that they
join at one end point. Below, on the left, is an example where the two segments are forced to
join and, on the right, an example where they are allowed to float.

X=[1:19]
Y=[1;2;3;4;5;6;7;8;9;10;9;8;7;6;5;4;3;2;1]+5*ran(x)
WINDOW 5
SET PLOTSYMBOL –1
GRAPH x y
SCALAR\FIT a b c d

X0 = 10
FIT y=(a+b*x)*(x<=x0)+(c+d*x)*(x>=x0)+(a+b*x-c-d*x)*1000*(x=x0)
SET PLOTSYMBOL 0
I1 = WHERE(x<=x0)
I2 = WHERE(x>=x0)
Y1 = a+b*x
Y2 = c+d*x
SET CURVECOLOR red
GRAPH\OVERLAY x[i1] y1[i1]
GRAPH\OVERLAY x[i2] y2[i2]
WINDOW 7
SET PLOTSYMBOL –1
GRAPH x y
FIT y=(a+b*x)*(x<=x0)+(c+d*x)*(x>=x0)
SET PLOTSYMBOL 0
Y1 = a+b*x
Y2 = c+d*x
SET CURVECOLOR red
GRAPH\OVERLAY x[i1] y1[i1]
GRAPH\OVERLAY x[i2] y2[i2]
REPLOT\ALL

Binning
Binning data is a means of converting one-dimensional data into two-dimensional data (BIN
command), or two-dimensional into three-dimensional (BIN2D command).

Simply put, binning counts the data points falling into a certain range. This results in a vector
(or vectors, in the 2-D case) describing the ranges (the bins), and a second vector (or matrix)
describing the counts.

Simple binning is straightforward. An input vector of values is taken as input, and two output
vectors containing the bins and the counts are returned.

BIN X XBIN XCOUNT ! bin the values in X
GRAPH\HISTOGRAM XBIN XCOUNT

There are many binning options, among them:

 various options for defining the bin boundaries
 the averages of the values in each bin can be returned
 values can be counted conditionally
 counts can be weighted
 Lagrange binning

Interpolation
There are many cases where one needs to interpolate data, for instance:

 estimating missing data values
 converting an irregular data sample to a monotonically increasing data sample
 representing a set of data points as a smooth function

Interpolation presumes the data can be represented as a smooth function, and that this function
passes through all of the data points. Interpolation therefore consists of looking up the y-
values of this function for any x that is not represented in the original data. This is normally
done by means of the INTERP function, which returns a data vector containing the
interpolated values. The INTERP function accepts three arguments:

 x-vector, a monotonically increasing set of x values.
 y-vector, the values of y at each of the above x values.
 x-interpolation points, a set of x-values at which to interpolate new y-values.

The method of interpolation is normally interpolating splines, but an optional fourth argument
can be used to select an alternate interpolation method:

 LINEAR simple linear interpolation
 LAGRANGE general Lagrange interpolation
 FC Fritsch and Carlson method of monotone piecewise cubic

 interpolation

If one's starting data is not monotonically increasing, then one can use the
SPLINTERP(x,y,n) function instead. It accepts an arbitrary set of x and y values, and a
number of points to interpolate. The output is a 2-column matrix, the first column of which
gives the interpolated points (i.e., x-values), and the second of which gives the interpolated
values (i.e., y-values).

2-D interpolation
Beginning with a scattered set of 3-D data points in three vectors (say, x, y, and z), you can
interpolate a regular matrix using the GRID command. The three vectors are assumed to
represent scattered points, where z[i] is the altitude corresponding to the coordinates
(x[i],y[i]). The set of scattered data points is used to construct a Thiessen triangulation
of the plane and a regular matrix, m, is interpolated.

For example, the following script produces the pictures below.

X=[1;0;1;0;0.2;0.3;0.5;0.8]

Y=[5;5;0;0;1;1.5;2.5;4]
Z=[10;10;10;10;-100;10;-100;500]
GRID\XYOUT X Y Z M XOUT YOUT
SET PLOTSYMBOL –14
GRAPH X Y ! produce the graph on the left
SET PLOTSYMBOL 0
DENSITY\DITHER XOUT YOUT M ! produce the density plot

Integration
Integration is the summing of areas and volumes under curves and surfaces. Extrema
provides you with several tools to accomplish this.

The INTEGRAL function is the simplest method; it accepts two vectors representing the x-
values (monotonically increasing) and y-values of the function to be integrated. The return
value is the integrated function, i.e., the integral at each x-value; there is one additional value
appended to the end of this output vector, and that is the integral over the full range of x.

For example, to find the area under cos3(x)+sin4(x) for 0 ≤ x ≤ π:

PI = ACOS(-1)
X = [0:PI:.1]
YI = INTEGRAL(X,COS(X)^3+SIN(X)^4)
VALUE = YI[#]

Other functions
Please refer to the DERIV function (derivative of a function); and the AREA function (area
within a polygon), and the VOLUME function (volume under a surface). There are also
numerous special integration functions, such as elliptic integral, Fresnel integral, exponential
integral, sine integral (SININT) and cosine integral (COSINT).

Two-dimensional integration is typically done using the VOLUME function, which can operate
on a variety of data types:

 vectors containing scattered (x,y) points
 vectors containing scattered polar coordinate points (angle, radius)
 regular matrix

Data selection
Filtering, cutting, and other forms of conditional data selection are a big part of many analysis
tasks. There are many ways this can be accomplished in Extrema.

Many of these techniques involve selecting subsets of vectors, matrices, or tensors, according
to some arbitrary condition. A trivial form of data selection simply consists of selecting the
desired indexes, for example:

good_data = m[#,*] ! only the last column of the matrix is good

If the good data is scattered throughout a vector (say data), and you have the indexes of the
good values in another vector good, then you can select the good data using the notation:

good_data = data(good)

Determining which indexes are good and which are bad is the tricky part. The WHERE
function is invaluable for this. It accepts a vector as input, and returns the indexes where the
input vector was not equal to zero.

The input vector is usually some kind of Boolean operation on the actual data vector, such that
a vector of true/false (1/0) values is actually passed to the WHERE function. The return vector
of indexes is then used to select the values from the original data vectors.

The power of this function is best illustrated with a few simple examples:

Example 1: select the data points within 1 unit of the origin

We have a scattered set of data points in the vectors x and y, but we want only the ones that
lie within the unit circle, i.e., the points that satisfy SQRT(x^2+y^2)<=1.

I=WHERE(SQRT(X^2+Y^2)<=1) ! select data in unit circle
! i is our list of selected indexes

GRAPH X[I] Y[I] ! graph the selected data

Example 2: select only the data points collected within a time window

We have an unordered, scattered set of data points in the vectors x and y, and the times of
each in a vector t. Say our time window is defined by tmin and tmax.

I=WHERE(T>=TMIN & T<=TMAX) ! select data in time window
GRAPH X[I] Y[I] ! graph the selected data

Example 3: select only the data points whose error is below a threshold

We have a set of data points in the vectors x and y, with errors denoted by vectors xerr and
yerr. We want to reject any data point with an x-error exceeding xthresh or y-error
exceeding ythresh.

I=WHERE(XERR<=XTHRESH|YERR<=YTHRESH) ! select good data
GRAPH X[I] Y[I] XERR[I] YERR[I] ! graph the selected data

Example 4: eliminate spikes from the data

We have a set of data points in the vectors x and y, with occasional anomalous (single-point)
spikes where the y-value goes very high. In the simple case, we can simply filter out any data
over a certain y-value (say, ymax):

I=WHERE(Y<YMAX)
GRAPH X[I] Y[I] ! graph the selected data

This won't work if the good data occasionally can rise above ymax. In this case you might
only want to filter out spikes with a certain minimum height (say, spike_min) relative to
adjacent good points. Here is a simple way to accomplish that:

YDIFF[1] = 0 ! get y-differences between each point and the previous point
YDIFF[2:LEN(Y)] = Y[2:#]-Y[1:#-1]
I=WHERE(YDIFF<SPIKE_MIN)
GRAPH X[I] Y[I] ! graph the selected data

	Extrema Tutorial
	Data Analysis
	Introduction
	Data Representation
	Addressing parts of arrays
	Constants
	Expressions

	Generating Data
	Sequences

	Operators
	Functions
	Fitting
	Smoothing
	Fitting to a function
	Fitting different data segments to different functions

	Binning
	Interpolation
	2-D interpolation

	Integration
	Other functions
	Data selection

